Finite iterative algorithms for extended Sylvester-conjugate matrix equations
نویسندگان
چکیده
منابع مشابه
Finite iterative algorithms for extended Sylvester-conjugate matrix equations
An iterative algorithm is presented for solving the extended Sylvester-conjugate matrix equation. By this iterativemethod, the solvability of thematrix equation can be determined automatically. When the matrix equation is consistent, a solution can be obtained within finite iteration steps for any initial values in the absence of round-off errors. The algorithm is also generalized to solve a mo...
متن کاملResidual norm steepest descent based iterative algorithms for Sylvester tensor equations
Consider the following consistent Sylvester tensor equation[mathscr{X}times_1 A +mathscr{X}times_2 B+mathscr{X}times_3 C=mathscr{D},]where the matrices $A,B, C$ and the tensor $mathscr{D}$ are given and $mathscr{X}$ is the unknown tensor. The current paper concerns with examining a simple and neat framework for accelerating the speed of convergence of the gradient-based iterative algorithm and ...
متن کاملAn accelerated gradient based iterative algorithm for solving systems of coupled generalized Sylvester-transpose matrix equations
In this paper, an accelerated gradient based iterative algorithm for solving systems of coupled generalized Sylvester-transpose matrix equations is proposed. The convergence analysis of the algorithm is investigated. We show that the proposed algorithm converges to the exact solution for any initial value under certain assumptions. Finally, some numerical examples are given to demons...
متن کاملIterative least-squares solutions of coupled Sylvester matrix equations
In this paper, we present a general family of iterative methods to solve linear equations, which includes the well-known Jacobi and Gauss–Seidel iterations as its special cases. The methods are extended to solve coupled Sylvester matrix equations. In our approach, we regard the unknown matrices to be solved as the system parameters to be identified, and propose a least-squares iterative algorit...
متن کاملParallel Algorithms for Triangular Periodic Sylvester-Type Matrix Equations
We present parallel algorithms for triangular periodic Sylvester-type matrix equations, conceptually being the third step of a periodic Bartels–Stewart-like solution method for general periodic Sylvester-type matrix equations based on variants of the periodic Schur decomposition. The presented algorithms are designed and implemented in the framework of the recently developed HPC library SCASY a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical and Computer Modelling
سال: 2011
ISSN: 0895-7177
DOI: 10.1016/j.mcm.2011.05.045